Problem 1 (20 points)
Motion along the x axis. State 1 is specified by its position wave function

$$
\langle x \mid 1\rangle=\frac{(2 \pi)^{-1 / 4}}{\sqrt{a}} \mathrm{e}^{-\left(\frac{x}{2 a}\right)^{2}} \quad \text { with } a>0
$$

and state 2 is specified by its momentum wave function

$$
\langle p \mid 2\rangle=\frac{(2 \pi)^{-1 / 4}}{\sqrt{b}} \mathrm{e}^{-\left(\frac{p}{2 b}\right)^{2}} \quad \text { with } b>0 .
$$

Calculate the transition probability $|\langle 1 \mid 2\rangle|^{2}$. [Hint: You can run a simple check on your answer, because you know the probability when $2 a b=\hbar$.]
Problem 2 (25 points)
Motion along the x axis; position operator X, momentum operator P.
Consider the Hamilton operator $H=-\Omega(X P+P X)$ with $\Omega>0$.
(a) Solve the Heisenberg equations of motion, that is: express $X(t)$ and $P(t)$ in terms of $X\left(t_{0}\right), P\left(t_{0}\right)$, and $T=t-t_{0}$.
(b) Evaluate the commutator $\left[X(t), P\left(t_{0}\right)\right]$.
(c) Find first the time transformation function $\left\langle x, t \mid p, t_{0}\right\rangle$ and then the time transformation function $\left\langle x, t \mid x^{\prime}, t_{0}\right\rangle$.
Problem 3 (15 points)
Harmonic oscillator; ladder operators A^{\dagger} and A; Hamilton operator $H=\hbar \omega A^{\dagger} A$. At the initial time t_{0}, the statistical operator $\rho\left(A^{\dagger}, A, t_{0}\right)$ is given by the normally ordered exponential

$$
\rho\left(A^{\dagger}, A, t_{0}\right)=\mathrm{e}^{-\left(A^{\dagger}-\alpha^{*}\right) ;(A-\alpha)},
$$

where α is an arbitrary complex number and α^{*} is its complex conjugate. What is the statistical operator $\rho\left(A^{\dagger}, A, t\right)$ at the later time $t=t_{0}+T$?

Problem 4 (20 points)
A harmonic oscillator is in the state described by the ket $\rangle=(|0\rangle+|1\rangle) / \sqrt{2}$, which is an equal-weight superposition of the Fock states to $n=0$ and $n=1$.
(a) What are the expectation values of A, A^{\dagger}, A^{2}, and A^{\dagger} ?
(b) What are the spreads $\delta X, \delta P$ of position operator X and momentum operator P ? How large is their product $\delta X \delta P$?

Problem 5 (20 points)
(a) Show that

$$
\operatorname{tr}\{F\}=\int \frac{\mathrm{d} x \mathrm{~d} p}{2 \pi \hbar} f\left(-\mathrm{i} \frac{\ell p}{\hbar}, \frac{x}{\ell}\right)
$$

where $F=f\left(A^{\dagger}, A\right)$ is the normally ordered form of operator F.
(b) Use this to calculate the trace of $\mathrm{e}^{-\lambda A^{\dagger} ; A}$ with $\lambda>0$.

