Problem 1 (20 points)

Motion along the x axis. State 1 is specified by its position wave function

$$\langle x|1\rangle = rac{(2\pi)^{-1/4}}{\sqrt{a}} \mathrm{e}^{-\left(rac{x}{2a}
ight)^2} \qquad \mathrm{with} \ a > 0,$$

and state 2 is specified by its momentum wave function

$$\langle p|2\rangle = \frac{(2\pi)^{-1/4}}{\sqrt{b}} e^{-\left(\frac{p}{2b}\right)^2} \qquad \text{with } b > 0.$$

Calculate the transition probability $|\langle 1|2\rangle|^2$. [Hint: You can run a simple check on your answer, because you know the probability when $2ab = \hbar$.]

Problem 2 (25 points)

Motion along the x axis; position operator X, momentum operator P. Consider the Hamilton operator $H = -\Omega(XP + PX)$ with $\Omega > 0$.

- (a) Solve the Heisenberg equations of motion, that is: express X(t) and P(t) in terms of $X(t_0)$, $P(t_0)$, and $T = t t_0$.
- (b) Evaluate the commutator $[X(t), P(t_0)]$.
- (c) Find first the time transformation function $\langle x, t | p, t_0 \rangle$ and then the time transformation function $\langle x, t | x', t_0 \rangle$.

Problem 3 (15 points)

Harmonic oscillator; ladder operators A^{\dagger} and A; Hamilton operator $H = \hbar \omega A^{\dagger} A$. At the initial time t_0 , the statistical operator $\rho(A^{\dagger}, A, t_0)$ is given by the normally ordered exponential

$$\rho(A^{\dagger}, A, t_0) = e^{-(A^{\dagger} - \alpha^*); (A - \alpha)},$$

where α is an arbitrary complex number and α^* is its complex conjugate. What is the statistical operator $\rho(A^{\dagger}, A, t)$ at the later time $t = t_0 + T$?

Problem 4 (20 points)

A harmonic oscillator is in the state described by the ket $|\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$, which is an equal-weight superposition of the Fock states to n = 0 and n = 1.

- (a) What are the expectation values of A, A^{\dagger} , A^{2} , and $A^{\dagger^{2}}$?
- (b) What are the spreads δX , δP of position operator X and momentum operator P? How large is their product $\delta X \, \delta P$?

Problem 5 (20 points)

(a) Show that

$$\operatorname{tr}\{F\} = \int \frac{\mathrm{d}x\mathrm{d}p}{2\pi\hbar} f\left(-\mathrm{i}\frac{\ell p}{\hbar}, \frac{x}{\ell}\right)$$

where $F = f(A^{\dagger}, A)$ is the normally ordered form of operator F.

(b) Use this to calculate the trace of $e^{-\lambda A^{\dagger}; A}$ with $\lambda > 0$.