Problem 1 (15 points)
Kets $|a\rangle$ and $|b\rangle$ are orthonormal. We represent superposition kets by columns in accordance with

$$
\rangle=| a\rangle \psi_{a}+|b\rangle \psi_{b}=(|a\rangle,|b\rangle)\binom{\psi_{a}}{\psi_{b}} \hat{=}\binom{\psi_{a}}{\psi_{b}}
$$

and statistical operators by 2×2 matrices in accordance with

$$
\rho=(|a\rangle,|b\rangle)\left(\begin{array}{cc}
\rho_{a a} & \rho_{a b} \\
\rho_{b a} & \rho_{b b}
\end{array}\right)\binom{\langle a|}{\langle b|} \hat{=}\left(\begin{array}{cc}
\rho_{a a} & \rho_{a b} \\
\rho_{b a} & \rho_{b b}
\end{array}\right) \equiv S .
$$

Find the matrices S_{1}, S_{2}, and S_{3} of the statistical operators for the mixtures blended from
(1) $\frac{3}{7}$ of $\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\frac{4}{7}$ of $\binom{1}{0}$;
(2) $\frac{1}{7}$ of $\frac{1}{\sqrt{10}}\binom{1}{-3}$ and $\frac{6}{7}$ of $\frac{1}{\sqrt{10}}\binom{3}{1}$;
(3) $\frac{12}{77}$ of $\binom{0}{1}$ and $\frac{65}{77}$ of $\frac{1}{\sqrt{130}}\binom{11}{3}$.

Do you get one, two, or three different mixtures?
Problem 2 (15 points)
Operator A is such that $A^{2}=A$.
(a) What are the eigenvalues of A ?
(b) Explain why all functions of A are of the linear form $f(A)=f_{0}+f_{1} A$ with numerical coefficients f_{0} and f_{1}.
(c) Determine f_{0} and f_{1} for $f(A)=\cos (\pi A)$.

Problem 3 (20 points)
Show that

$$
\mathrm{e}^{\mathrm{i} \lambda P^{3} / \hbar} \mathrm{e}^{-\mu X} \mathrm{e}^{-\mathrm{i} \lambda P^{3} / \hbar}=\mathrm{e}^{-\mu X-3 \mu \lambda P^{2}}
$$

where λ and μ are numerical constants.
Problem 4 (25 points)
The state of a system is specified by its momentum wave function $\psi(p)=\langle p \mid\rangle$.
(a) Express the expectation values $\langle X\rangle,\left\langle X^{2}\right\rangle$, and $\langle P X\rangle$ by integrals involving $\psi(p)$ and $\partial \psi(p) / \partial p$.
(b) Evaluate these integrals for $\psi(p)=\left\{\begin{array}{cc}2 \sqrt{a^{3}} p \mathrm{e}^{-a p} & \text { for } p>0, \\ 0 & \text { for } p<0,\end{array}\right.$ where $a>0$ is a constant parameter.
[Hint: You may have a use for $\int_{0}^{\infty} \mathrm{d} x x^{n} \mathrm{e}^{-x}=n$! for $n>-1$.]
Problem 5 (25 points)
Operator R is such that $\langle x| R=2\langle-x|$ for all position bras $\langle x|$.
(a) Determine the $X ; P$-ordered form of R.
(b) Calculate the trace of R with the aid of a suitable phase-space integration.

