Problem 1 (15 points)

Kets $|a\rangle$ and $|b\rangle$ are orthonormal. We represent superposition kets by columns in accordance with

$$|\rangle = |a\rangle\psi_a + |b\rangle\psi_b = (|a\rangle, |b\rangle) \begin{pmatrix}\psi_a\\\psi_b\end{pmatrix} = \begin{pmatrix}\psi_a\\\psi_b\end{pmatrix}$$

and statistical operators by 2×2 matrices in accordance with

$$\rho = (|a\rangle, |b\rangle) \begin{pmatrix} \rho_{aa} & \rho_{ab} \\ \rho_{ba} & \rho_{bb} \end{pmatrix} \begin{pmatrix} \langle a | \\ \langle b | \end{pmatrix} \cong \begin{pmatrix} \rho_{aa} & \rho_{ab} \\ \rho_{ba} & \rho_{bb} \end{pmatrix} \equiv S.$$

Find the matrices S_1 , S_2 , and S_3 of the statistical operators for the mixtures blended from 3 1 (1) 4 (1)

(1)
$$\frac{3}{7}$$
 of $\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$ and $\frac{4}{7}$ of $\begin{pmatrix} 1\\0 \end{pmatrix}$;
(2) $\frac{1}{7}$ of $\frac{1}{\sqrt{10}} \begin{pmatrix} 1\\-3 \end{pmatrix}$ and $\frac{6}{7}$ of $\frac{1}{\sqrt{10}} \begin{pmatrix} 3\\1 \end{pmatrix}$;
(3) $\frac{12}{77}$ of $\begin{pmatrix} 0\\1 \end{pmatrix}$ and $\frac{65}{77}$ of $\frac{1}{\sqrt{130}} \begin{pmatrix} 11\\3 \end{pmatrix}$.

Do you get one, two, or three different mixtures?

Problem 2 (15 points)

Operator A is such that $A^2 = A$.

- (a) What are the eigenvalues of A?
- (b) Explain why all functions of A are of the linear form $f(A) = f_0 + f_1 A$ with numerical coefficients f_0 and f_1 .
- (c) Determine f_0 and f_1 for $f(A) = \cos(\pi A)$.

Problem 3 (20 points)

Show that

$$e^{i\lambda P^3/\hbar}e^{-\mu X}e^{-i\lambda P^3/\hbar}=e^{-\mu X-3\mu\lambda P^2}$$

where λ and μ are numerical constants.

Problem 4 (25 points)

The state of a system is specified by its momentum wave function $\psi(p) = \langle p | \rangle$.

- (a) Express the expectation values $\langle X \rangle$, $\langle X^2 \rangle$, and $\langle PX \rangle$ by integrals involving
- (a) Express and $\psi(p)/\partial p$. (b) Evaluate these integrals for $\psi(p) = \begin{cases} 2\sqrt{a^3} p e^{-ap} \text{ for } p > 0, \\ 0 & \text{for } p < 0, \end{cases}$

where a > 0 is a constant parameter.

[Hint: You may have a use for $\int_0^\infty dx \, x^n e^{-x} = n!$ for n > -1.]

Problem 5 (25 points)

Operator R is such that $\langle x|R = 2\langle -x|$ for all position bras $\langle x|$.

- (a) Determine the X; P-ordered form of R.
- (b) Calculate the trace of R with the aid of a suitable phase-space integration.