Problem 1 (30 marks)
A certain Hamilton operator H is represented by the 3×3 matrix

$$
\mathcal{H}=\hbar \omega\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \text { and the initial column } \psi_{0} \equiv \psi(t=0)=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right)
$$

represents the state ket \rangle.
(a) Calculate the expectation value $\langle H\rangle$ and the spread δH of the Hamilton operator.
(b) Determine the eigenvalues, eigencolumns, and eigenrows of \mathcal{H}.
(c) If one measured H at $t=0$, what would be the possible measurement results?
(d) With which probabilities would they occur?
(e) Calculate $\psi(t)$.

Problem 2 (15 marks)
Motion along the x axis. Kets $|a\rangle$ and $|b\rangle$ are specified by the Gaussian wave functions

$$
\begin{aligned}
& \psi_{a}(x)=\langle x \mid a\rangle=\frac{(2 \pi)^{-1 / 4}}{\sqrt{a}} \mathrm{e}^{-\left(\frac{x}{2 a}\right)^{2}} \text { with } a>0 \\
& \psi_{b}(x)=\langle x \mid b\rangle=\frac{(2 \pi)^{-1 / 4}}{\sqrt{b}} \mathrm{e}^{-\left(\frac{x}{2 b}\right)^{2}} \text { with } b>0
\end{aligned}
$$

(a) Calculate the transition probability $|\langle b \mid a\rangle|^{2}$.
(b) How large is it when $a=2 b$?

Problem 3 (15 marks)
Motion along the x axis; position operator X, momentum operator P.
(a) Evaluate the commutator $\left[X, \mathrm{e}^{\mathrm{i} x P / \hbar}{ }^{2}\right]$ between the position operator X and the unitary displacement operator $\mathrm{e}^{\mathrm{i} x P / \hbar}$ (where x is any real number).
(b) Use this commutator (or any other method) to show that

$$
\mathrm{e}^{-\mathrm{i} x P / \hbar} X \mathrm{e}^{\mathrm{i} x P / \hbar}=X-x
$$

Problem 4 (20 marks)
Motion along the x axis; position operator X, momentum operator P. For small displacements x, the squared expectation value of the unitary displacement operator $\mathrm{e}^{\mathrm{i} x P / \hbar}$ is of the form $\left|\left\langle\mathrm{e}^{\mathrm{i} x P / \hbar}\right\rangle\right|^{2}=1-(x / L)^{2}+O\left(x^{4}\right)$, where L is the so-called coherence length.
(a) How is L related to the momentum spread δP ?
(b) Which upper bound on L is set by the position spread δX ?

Problem 5 (20 marks)
In terms of the ladder operators A^{\dagger} and A, the Hamilton operator of a harmonic oscillator is $H=\hbar \omega A^{\dagger} A$.
(a) State the Heisenberg equations of motion for $A(t)$ and $A^{\dagger}(t)$.
(b) Solve them, that is: express $A(t)$ and $A^{\dagger}(t)$ in terms of $A(0)$ and $A^{\dagger}(0)$.
(c) Then evaluate the commutator $\left[A\left(t_{1}\right), A^{\dagger}\left(t_{2}\right)\right]$, where t_{1} and t_{2} are two arbitrary instants.

