Problem 1 (10 points)

Atoms that have been pre-selected as "+ in z" are successively passed through first a "+ in x" selector, then a "- in z" selector.

Which fraction of the atoms is let through?

Problem 2 (15 points)

A source emits atoms such that each of them is either "+ in x" or "+ in z", choosing randomly between these options, with equal chances for both. What are the probabilities for

- (a) finding the next atom as "+ in x" or "- in x";
- (b) finding the next atom as "+ in y" or "- in y";
- (c) finding the next atom as "+ in z" or "- in z",

when the respective experiments are performed?

Problem 3 (20 points)

Atoms are prepared such that their magnetic properties are described by the ket

$$|\uparrow_z\rangle\frac{2}{3} + |\downarrow_z\rangle\frac{1+2i}{3} \stackrel{\circ}{=} \frac{1}{3} \begin{pmatrix} 2\\1+2i \end{pmatrix}$$

What are the probabilities for

- (a) finding the next atom as "+ in x" or "- in x";
- (b) finding the next atom as "+ in y" or "- in y";
- (c) finding the next atom as "+ in z" or "- in z",

when the respective experiments are performed?

Problem 4 (15 points)

Express the operator product

$$(\sigma_x \cos \phi + \sigma_z \sin \phi)(\sigma_z \cos \phi - \sigma_x \sin \phi)$$

as a linear function of $\vec{\sigma}$, whereby ϕ is an arbitrary angle parameter.

Problem 5 (20 points)

Express the operator

$$A = |\uparrow_x\rangle\langle\uparrow_z| + |\downarrow_x\rangle\langle\downarrow_z|$$

as a linear function of $\vec{\sigma}$. What is A^2 ?

Problem 6 (20 points)

Consider n pairs of kets, the k-th pair denoted by $|a_k\rangle$ and $|b_k\rangle$, that are jointly defined by

$$|a_k\rangle = |\uparrow_z\rangle u_k^* + |\downarrow_z\rangle v_k, \qquad |b_k\rangle = |\uparrow_z\rangle v_k^* - |\downarrow_z\rangle u_k$$

for $k = 1, 2, \ldots, n$, whereby the amplitudes u_k and v_k are arbitrary complex numbers. Then,

- (a) how large are the probabilities $|\langle a_k | b_k \rangle|^2$?
- (b) how are the probability amplitudes $\langle a_j | a_k \rangle$ and $\langle b_j | b_k \rangle$ related to each other?