Problem 1 (10 points)
Atoms that have been pre-selected as " + in z " are successively passed through first a " + in x " selector, then a " - in z " selector.
Which fraction of the atoms is let through?
Problem 2 (15 points)
A source emits atoms such that each of them is either " + in x " or " + in z ", choosing randomly between these options, with equal chances for both. What are the probabilities for
(a) finding the next atom as " + in x " or " - in x ";
(b) finding the next atom as " + in y " or " - in y ";
(c) finding the next atom as " + in z " or " - in z ",
when the respective experiments are performed?
Problem 3 (20 points)
Atoms are prepared such that their magnetic properties are described by the ket

$$
\left|\uparrow_{z}\right\rangle \frac{2}{3}+\left|\downarrow_{z}\right\rangle \frac{1+2 \mathrm{i}}{3} \hat{=} \frac{1}{3}\binom{2}{1+2 \mathrm{i}} .
$$

What are the probabilities for
(a) finding the next atom as " + in x " or " - in x ";
(b) finding the next atom as " + in y " or " - in y ";
(c) finding the next atom as " + in z " or " - in z ",
when the respective experiments are performed?
Problem 4 (15 points)
Express the operator product

$$
\left(\sigma_{x} \cos \phi+\sigma_{z} \sin \phi\right)\left(\sigma_{z} \cos \phi-\sigma_{x} \sin \phi\right)
$$

as a linear function of $\vec{\sigma}$, whereby ϕ is an arbitrary angle parameter.
Problem 5 (20 points)
Express the operator

$$
A=\left|\uparrow_{x}\right\rangle\left\langle\uparrow_{z}\right|+\left|\downarrow_{x}\right\rangle\left\langle\downarrow_{z}\right|
$$

as a linear function of $\vec{\sigma}$. What is A^{2} ?
Problem 6 (20 points)
Consider n pairs of kets, the k-th pair denoted by $\left|a_{k}\right\rangle$ and $\left|b_{k}\right\rangle$, that are jointly defined by

$$
\left|a_{k}\right\rangle=\left|\uparrow_{z}\right\rangle u_{k}^{*}+\left|\downarrow_{z}\right\rangle v_{k}, \quad\left|b_{k}\right\rangle=\left|\uparrow_{z}\right\rangle v_{k}^{*}-\left|\downarrow_{z}\right\rangle u_{k},
$$

for $k=1,2, \ldots, n$, whereby the amplitudes u_{k} and v_{k} are arbitrary complex numbers. Then,
(a) how large are the probabilities $\left|\left\langle a_{k} \mid b_{k}\right\rangle\right|^{2}$?
(b) how are the probability amplitudes $\left\langle a_{j} \mid a_{k}\right\rangle$ and $\left\langle b_{j} \mid b_{k}\right\rangle$ related to each other?

