Problem 1 (10 points)

Ladder operators A, A^{\dagger} of a one-dimensional harmonic oscillator: Write the commutator $[A^2, A^{\dagger 4}]$ in its A^{\dagger} , A-ordered form.

Problem 2 (15 points)

For the vector operators \vec{R} , \vec{P} , and \vec{L} of position, momentum, and orbital angular momentum, respectively, show that the statements

$$\vec{R} \times \vec{L} + \vec{L} \times \vec{R} = 2i\hbar \vec{R}$$
 and $\vec{P} \times \vec{L} + \vec{L} \times \vec{P} = 2i\hbar \vec{P}$

hold.

Problem 3 (25 points)

Orbital angular momentum: vector operator \vec{L} with components L_1, L_2 , and L_3 . Denote by $|l, m\rangle$ the joint eigenkets of \vec{L}^2 and L_3 (eigenvalue $\hbar^2 l(l+1)$ of \vec{L}^2 ; eigenvalue $\hbar m$ of L_3).

- (a) Exploit the known results of applying $L_1 \pm iL_2$ to $|l, m\rangle$ to find $L_1|l, m\rangle$ for l = 2and $m = 0, \pm 1, \pm 2$.
- (b) Determine the coefficients α and β in

$$L_1(|l=2, m=2)\alpha - |l=2, m=0)\beta + |l=2, m=-2\alpha) = 0$$

such that this equation holds and $2|\alpha|^2 + |\beta|^2 = 1$.

Problem 4 (25 points)

Consider the one-dimensional Hamilton operator

$$H = \frac{1}{2M}P^2 + \lambda^2 |X|^3,$$

where X is the particle's position operator, P is its momentum operator, M is its mass, and $\lambda > 0$ determines the strength of the cubic potential.

- (a) Determine the expectation values of P^2 and $|X|^3$ in a state with a Gaussian wave function $\psi(x) = \langle x | \rangle = \pi^{-1/4} \sqrt{\kappa} e^{-\frac{1}{2}\kappa^2 x^2}$ (with $\kappa > 0$.).
- (b) Use them to get an upper bound on the ground-state energy E_0 . [Hint: Remember the Rayleigh–Ritz variational principle; optimize the value of κ .]

Problem 5 (25 points) The Hamilton operator

$$H = \frac{1}{2M}P^2 + \frac{1}{2}M\omega^2 X^2 - \frac{1}{2}\hbar\omega - FX \,,$$

is that of a one-dimensional harmonic oscillator (position operator X, momentum operator P, circular frequency ω), perturbed by a force of constant strength F.

- (a) Find the change in the ground-state energy to second order in F. [Hint: It may help to remember about ladder operators.]
- (b) Determine the exact ground-state energy, and compare it with your result from part (a). [Hint: Complete a square.]