Problem 1 (10 points)
Ladder operators A, A^{\dagger} of a one-dimensional harmonic oscillator: Write the commutator $\left[A^{2}, A^{\dagger 4}\right]$ in its A^{\dagger}, A-ordered form.

Problem 2 (15 points)
For the vector operators \vec{R}, \vec{P}, and \vec{L} of position, momentum, and orbital angular momentum, respectively, show that the statements

$$
\vec{R} \times \vec{L}+\vec{L} \times \vec{R}=2 \mathrm{i} \hbar \vec{R} \quad \text { and } \quad \vec{P} \times \vec{L}+\vec{L} \times \vec{P}=2 \mathrm{i} \hbar \vec{P}
$$

hold.
Problem 3 (25 points)
Orbital angular momentum: vector operator \vec{L} with components L_{1}, L_{2}, and L_{3}. Denote by $|l, m\rangle$ the joint eigenkets of \vec{L}^{2} and L_{3} (eigenvalue $\hbar^{2} l(l+1)$ of \vec{L}^{2}; eigenvalue $\hbar m$ of L_{3}).
(a) Exploit the known results of applying $L_{1} \pm \mathrm{i} L_{2}$ to $|l, m\rangle$ to find $L_{1}|l, m\rangle$ for $l=2$ and $m=0, \pm 1, \pm 2$.
(b) Determine the coefficients α and β in

$$
L_{1}(|l=2, m=2\rangle \alpha-|l=2, m=0\rangle \beta+|l=2, m=-2\rangle \alpha)=0
$$

such that this equation holds and $2|\alpha|^{2}+|\beta|^{2}=1$.
Problem 4 (25 points)
Consider the one-dimensional Hamilton operator

$$
H=\frac{1}{2 M} P^{2}+\lambda^{2}|X|^{3},
$$

where X is the particle's position operator, P is its momentum operator, M is its mass, and $\lambda>0$ determines the strength of the cubic potential.
(a) Determine the expectation values of P^{2} and $|X|^{3}$ in a state with a Gaussian wave function $\psi(x)=\langle x \mid\rangle=\pi^{-1 / 4} \sqrt{\kappa} \mathrm{e}^{-\frac{1}{2} \kappa^{2} x^{2}}$ (with $\kappa>0$.).
(b) Use them to get an upper bound on the ground-state energy E_{0}. [Hint: Remember the Rayleigh-Ritz variational principle; optimize the value of κ.]

Problem 5 (25 points)
The Hamilton operator

$$
H=\frac{1}{2 M} P^{2}+\frac{1}{2} M \omega^{2} X^{2}-\frac{1}{2} \hbar \omega-F X,
$$

is that of a one-dimensional harmonic oscillator (position operator X, momentum operator P, circular frequency ω), perturbed by a force of constant strength F.
(a) Find the change in the ground-state energy to second order in F. [Hint: It may help to remember about ladder operators.]
(b) Determine the exact ground-state energy, and compare it with your result from part (a). [Hint: Complete a square.]

