Quantum Mechanics Symbolism of Atomic Measurements

by J. Schwinger, edited by B.-G. Englert (2nd printing, Springer-Verlag 2003)

List of typographical errors (updated April 2021)

- 1. On p. 29, in the footnote, Schrödinger's year of birth is 1887, not 1889.
- 2. On p. 30, before (1.1.2), replace "component of force" by "component of the force".
- 3. On p. 64, in (1.12.29) replace $e^{i\varphi}$ by $e^{\pm i\varphi}$ and $e^{-i\varphi}$ by $e^{\mp i\varphi}$.
- 4. On p. 83, in (1.16.19) replace $e^{iq'p}$ by $e^{iq''p}$.
- 5. On p. 109, in (2.3.7) replace $e^{i\langle q\rangle (p'-\langle p\rangle)}$ by $e^{-i\langle q\rangle (p'-\langle p\rangle)}$.
- 6. On p. 117, in (2.5.16) replace the left-hand side by $0 = \left(\frac{\mathrm{d}^2}{\mathrm{d}{q'}^2} {q'}^2 + 2n + 1\right) \,\mathrm{e}^{-\frac{1}{2}{q'}^2} \mathrm{H}_n(q').$
- 7. On p. 119, in (2.5.37) replace $\sum_{l\neq q}$ by $\sum_{l\neq k}$.
- 8. On p. 126, first line in (2.7.33), replace $\langle y^{\dagger}|y''\rangle$ by $\langle y^{\dagger'}|y''\rangle$.
- 9. On p. 126, last line in (2.7.33), replace $\langle y^{\dagger}|'y'' \rangle$ by $\langle y^{\dagger'}|y'' \rangle$.
- 10. On p. 137, in Problem 2-14, replace $\frac{1}{2}\left|\mathrm{i}\left[A,B\right]\right|$ by $\frac{1}{2}\left|\left\langle\mathrm{i}\left[A,B\right]\right\rangle\right|$.
- 11. On p. 138, in Problem 2-17a, replace $(\frac{1}{2}(\overline{q}\,\overline{p}+\overline{p}\,\overline{q}))$ by $(\frac{1}{2}(\overline{q}\,\overline{\overline{p}}+\overline{\overline{p}}\,\overline{\overline{q}}))$ in the last displayed equation.
- 12. On p. 151, in (3.4.2) replace $j = \frac{1}{2}(n_+ + n_-) = n$ by $j = \frac{1}{2}(n_+ + n_-) = \frac{1}{2}n$.
- 13. On p. 151, in the second line of (3.4.3) replace $|n_+ 1, n_+ + 1\rangle$ by $|n_+ 1, n_- + 1\rangle$.
- 14. On p. 166, in (3.7.22), replace $U_{-1,1}^{(1)} = \sin^2 \theta$ by $U_{-1,1}^{(1)} = \sin^2 \frac{\theta}{2}$.
- 15. On p. 203, in (5.5.14) read $\int_{t_2}^{t_1}$ rather than $\int_{t_1}^{t_2}$.
- 16. On p. 232, in (6.7.8) replace $\frac{1}{3}\sigma^3$ by $\frac{1}{3}\tau^3$ in the exponent.
- 17. On p. 278, in (7.4.14) read $(1 \pm \mathrm{i}\delta\alpha)y_{\pm}$ rather than $(1 \pm \mathrm{i}\delta\alpha\,y_{\pm})$.
- 18. On p. 285, in the first line of (7.5.8) read $L^2 \to -(\boldsymbol{q} \times \boldsymbol{\nabla}) \cdot (\boldsymbol{q} \times \boldsymbol{\nabla})$ rather than $L^2 \to -(\boldsymbol{q} \times \boldsymbol{\nabla}) \times (\boldsymbol{q} \times \boldsymbol{\nabla})$.
- 19. On p. 287, in (7.5.26) replace $L_{n_{\rho}}^{(l+\frac{1}{2})}(\rho)$ by $L_{n_{\rho}}^{(l+\frac{1}{2})}(\rho^2)$.

- 20. On p. 366, in the second and the third line of (10.1.41), replace $e^{\mathrm{i}\varphi(a')+\mathrm{i}\varphi(a'')N}$ by $e^{\mathrm{i}\varphi(a')N+\mathrm{i}\varphi(a'')N}$.
- 21. On p. 400, in (11.2.35) replace $\frac{1}{4\pi^2 e^2}$ by $\frac{1}{4\pi e^2}$.
- 22. On p. 401, replace the text below the plot by "shows that f=0 occurs at finite x, where $-f' \neq 0$, if -f'(0) > B; and f'=0 occurs at finite x, where $f \neq 0$, if -f'(0) < B."
- 23. On p. 402, in the second line of (11.2.46), replace -f(0) by -f'(0).
- 24. On p. 404, in (11.2.62), replace $\frac{3}{7} \frac{B}{a/a_0} B Z^{\frac{7}{3}} \frac{e^2}{a_0}$ by $\frac{3}{7} \frac{B}{a/a_0} Z^{\frac{7}{3}} \frac{e^2}{a_0}$.
- 25. On p. 447, in (12.9.3), replace $\langle E_0 | \delta H_1 | E_0 \rangle$ by $\langle E_0 | \delta H_2 | E_0 \rangle$.