
 33

CZ1106

Lecturenote (Part 2)

Chapter 3

 Bit Manipulation

1. Introduction

 C allows programs to manipulate data at bit level.

 In order to speed operations, bits are organized into
groups such as a byte, which is normally eight bits,
or a word containing several bytes.

 Word sizes vary from machine to machine; on
commercially available computers they range from
16 bits at the lower end to 64 bits on some large,
scientifically oriented machines.

 In C an unsigned int would normally corresponds to
a machine word and is the most natural type to use
if bits are being manipulated, although signed int is
sometimes used.

 34

2. Basic Operations

The operations available on words considered as bit values
are the logical operations and various types of shift. The
logical operations are:

& Bitwise AND

 Each bit of the left-hand operand is logically ANDed
with each bit of the right-hand operand. ANDing two
bits together gives the result zero unless both bits are
one.

 (both must be one to get one)

&

0

1

0

0

0 1

0

1

The & Table

E.g.,

 unsigned i = 269, j = 187, k;

 k = i & j;
 printf("k = %u",k);

will give k = 9

 00100001101 (269)
 &00010111011 (187)
 00000001001 (9)

 35

| Bitwise inclusive OR

 Each bit of the left-hand operand is logically ORed with
each bit of the right-hand operand. Inclusively ORing
two bits together gives the result one if either of the two
bits is one, or both bits are one.

 (either one or both to get one)

|

0

1

0

1

0 1

1

1

The | Table

E.g.,

 unsigned i = 269, j = 187, k;

 k = i | j;
 printf("k = %u",k);

will give k = 447

00100001101 (269)
 |00010111011 (187)
 00110111111 (447)

 36

^ Bitwise exclusive OR

 Each bit of the left-hand operand is exclusively ORed
with each bit of the right-hand operand. Exclusively
ORing two bits together gives the result one if either,
but not both, of the two bits is one.

 (one and only one to get one)

^

0

1

0

1

0 1

1

0

The ^ Table

E.g.,

 unsigned i = 269, j = 187, k;

 k = i ^ j;
 printf("k = %u",k);

will give k = 438

00100001101 (269)
 ^00010111011 (187)
 00110110110 (438)

 37

~ Bitwise complement (also called NOT)

 This is a monadic operator (i.e., has no left-hand
operand) and it reverses each bit of its operand.

 E.g.,

 unsigned i = 269;

 i = ~ i;
 printf("i = %u",i);

will give i = 65266 on a 16-bit machine.

 ~ 0000 0001 0000 1101 (269)
 1111 1110 1111 0010 (65266)

 38

<< Left shift operator

 E.g., target << n, where target and n can be

expressions. n must be a positive value. Bit contents
will be dropped when shifted to the left end.

E.g.,

 unsigned i = 19, j;

 j = i << 2;

 /* meaning that shift the bit pattern of i to the
 left by 2 places and assign the result to j */

 printf("%u",j);

 will give 76

...00010011 << 2 = ...01001100
 = 76

Take note that shift left 2 places is equivalent to
"multiplied by 4". What is the result after shifting left 5
places ?

 39

>> Right shift operator

E.g.,

 unsigned i = 110;

 i = i >> 3;
 /* means to shift the contents of bit pattern
 in i to the right by 3 places and assign
 the result back to i */

 printf("%u",i);

 will give 13

...1101110 = ...1101 (some bits on the right
 hand side are dropped)

 = 13

Take note that shift right 3 places is equivalent to "divided
by 8". What is the result after shifting right 5 places ?

Short Form :

. a = a+b; can be written as a += b;

. Similarly a = a|b; can be written as a|=b;

. Other operators include &=, ^=, <<= and >>=.

 40

Bitwise Operations :

E.g.,

Let a = 1101 1100 0101 1100 in binary. To extract the
rightmost eight bits of a, we use the & operator as follows:

 1101 1100 0101 1100
 & 0000 0000 1111 1111

 0000 0000 0101 1100

Same technique can be used to test individual bits or
groups of bits.

E.g., to test the right-most bit of V

 if (v & 1) ...

 1101 1100 0101 110?
 & 0000 0000 0000 0001

 0000 0000 0000 000?

E.g., to test the right-most 3 bits of V

 if (v & 7) ...

 1101 1100 0101 1???
 & 0000 0000 0000 0111

 0000 0000 0000 0???

 41

Application of & Operator :

All odd numbers have a 1 in the right-most bit of its
binary representation. So, to check if a number is odd
we simply check its right-most bit. The following
function will return 0 (false) if its parameter is an even
number and 1 (true) if it is odd.

int odd(int n)
{
 return(n & 1); /* Test if n is odd */
}

 To make use of this function to check if num is odd :

 int num;
 :
 :
 if odd (num) /* call the above function */
 printf ("num is odd");
 else
 printf ("num is even");

Application of | Operator :

OR operations can be used to set bits in a word. For
instance, to set the leftmost four bits of a 16-bit integer
v to 1, leaving the others unchanged, we can use the
expression v |= 0xf000.

E.g., v = 0x639c;

 0110 0011 1001 1100 (0x639c)
 | 1111 0000 0000 0000 (0xf000)

 1111 0011 1001 1100 (0xf39c)

 42

3. An Efficient Way to Perform Bit Counting

. A simple practical example involves trying to count the
number of bits in a word which are set to 1, a problem
which can arise in data communication (see Practical 2).

. The obvious way is to check every bit. This is

implemented by a static loop instruction.

Program

/* AC2-1.C */

#include<stdio.h>

int Count_Bits_Obvious(unsigned n)
{
 int count=0,i;
 int mask=1;

 for (i=0;i<16;i++)
 {
 if (n & mask) count++;
 n>>=1;
 }

 return count;
}

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 43

main()
{
 int number;

 printf("Enter an integer:");
 scanf("%d",&number);
 printf("There are %d 1-bits.\n",
 Count_Bits_Obvious(number));
 return 0;
}

Screen Output

Enter an integer:57
There are 4 1-bits.

Time Efficiency Consideration :

. It requires 16 iterations for any bit patterns of n. This is
very inefficient when n contains a lot of 0-bits. E.g., if
n = 16384. It takes 16 iterations to discover that the
number of 1-bits in 16384 (214) is only 1.

A better method to count the number of 1-bits :

In each iteration we hop to the nearest 1-bit and erase it.
Repeat these operations until the number becomes 0. The
number of iterations is the number of 1-bits.

 44

Example :
 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0n =

1 1 00 0 0 0 0 0 0 0 0 0 0 0 0

1 0 00 0 0 0 0 0 0 0 0 0 0 0 0

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0

It incurs 3 iterations before n becomes 0. The number of 1-
bits in the number is 3.

 45

Program

/* AC2-2.C */

#include<stdio.h>

int Count_Bits_Better(unsigned n) /* Count the 1-bit in n */
{
 int count=0;

 while (n>0)
 {
 count++;
 n &= n-1; /* n = n & (n-1); */
 }

 return count;
}

main()
{
 int number;

 printf("Enter an integer:");
 scanf("%d",&number);
 printf("There are %d 1-bits.\n", Count_Bits_Better(number));

 return 0;
}

Screen Output

Enter an integer:78
There are 4 1-bits.

 46

4. Bit Rotations

. Slightly different from bit shifting.
. Dropped bits are appended to the other end.

 E.g.,
 0001 0001 0000 0001 left-rotated 4 bits becomes
 0001 0000 0001 0001

 But for shift operation, bits are dropped !!!!
 E.g.,
 0001 0001 0000 0001 << 4 = 0001 0000 0001 0000

. No rotate operator in C language.

In the following program, a rotate_l function is written to
rotate an integer x to the left by n places. A main function is
also included to test the function.

 47

Program

/* AC2-3.C */

#include<stdio.h>

int rotate_l(int ,int);

void main()
{
 int x,n,z;

 x=0xfa27; /* this is any arbitrary number
 for demonstration */
 n=4;
 z=rotate_l(x,n);
 printf(" %4x (base 16) rotated left by %d bits
 becomes %4x (base 16)\n", x,n,z);
}

int rotate_l(int x,int n)
{
 int i,truncate;

 for (i=0;i<n;i++)
 {
 truncate = x & 0x8000;
 /* drop every bit except the leftmost bit */
 x <<= 1;
 /* x = x<<1, shift x to the left by 1 bit */
 if (truncate !=0)
 x |= 1; /* x |= 1, to set the rightmost bit */
 }

 return x;
}

 48

truncate = x & 0x8000;

X: ?

& 0x8000: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 x << = 1; will make bit-0 of x to contain 0

If (truncate !=0) x |= 1; /* x = x | 1 ; */

X: 0

| 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 1

Screen Output

fa27 (base 16) rotated left by 4 bits becomes a27f (base 16)

 49

5. Case Study

A twentieth-century date can be written with integers in the
form day/month/year. An example is 24/1/95, which
represents 24 January 1995. A simple way to store the date
is by using a struct definition as follows :

 struct date
 {
 int day;
 int month;
 int year;
 };

Storage Efficiency Consideration :

 Too much storage overhead; we only require 31 different
values for the day, 12 different values for the month and
100 different values for the year, and their values need
not, and will never, go up to 32767.

 Need only 5 bits to represent the day, 4 bits to represent
the month, and 7 bits to represent the year.

 50

Function pack_date is to perform this task. Function
print_bit is to print the packed date. Function unpack_date,
is used to test that the date packing is correct.

Program

/* AC2-4.C */

#include<stdio.h>

unsigned pack_date(int day, int month, int year)
{
 unsigned packed;

 day <<= 11; /* drop the first 11 bits and
 shift the contents to the left */
 month <<= 7; /* drop the first 7 bits and
 ensure that bits 0 to 6 are zeros. */
 year %= 100;
 /* keep the last 2 digit of year */
 packed = day | month | year;
 return packed;
}

day:

month:

year:

packed:

 51

void unpack_date(unsigned packed)
{
 int day,month,year;

 day = packed >> 11;
 month = (packed & 0x0780) >> 7;
 year = packed & 0x007f;

 printf("%d/%d/%d\n",day,month,year);
}

 day year

packed:

 month

 52

void print_bit(unsigned word)
{
 int n=sizeof(int)*8,i;
 int mask=1<<(n-1);

 for (i=0;i<n;i++)
 {
 if (word & mask)
 printf("1");
 else
 printf("0");
 word <<= 1;
 }
 putchar('\n');
}

word:

mask:

 53

main()
{
 int d,m,y;
 unsigned packed;

 printf("Test Program for date packing.\n");
 printf("Enter a date in the form dd/mm/yyyy : ");
 scanf("%d/%d/%d",&d,&m,&y);
 packed=pack_date(d,m,y);
 printf("The packed bit pattern is : ");
 print_bit(packed);
 printf("Unpacked date is :");
 unpack_date(packed);

 return 0;
}

Screen Output

Test Program for date packing.
Enter a date in the form dd/mm/yyyy : 19/11/1994
The packed bit pattern is : 1001110111011110
Unpacked date is :19/11/94

 54

6. Bits Fields

 Reduced storage space.
 More convenient mechanism likes struct.

But,

 Using bit fields can make a program machine dependent
(not portable).

Example :

A sports club with a computer system to record details of
members;
 . birth date (day, month, year),
 . gender (male = 0, female = 1),
 . active in a club team (no = 0, yes = 1),
 . club dues are paid (no = 0, yes = 1).

This can be done with the following declarations (which
would normally form part of a larger record):

struct
{
 unsigned int BirthDay :5;
 /* meaning use only 5 bits */
 unsigned int BirthMonth :4;
 /* meaning use only 4 bits */
 unsigned int BirthYear :7;
 unsigned int Female :1;
 unsigned int Active :1;
 unsigned int PaidUp :1;
} PersonalDetails;

The structure members in this case are bit fields. The
numbers after the colon following each field represent the

 55

number of bits to be allowed for the field. Thus five bits for
the BirthDay allow values in the range 0...31, which is
enough for the largest month.

The fields can now be used completely as if they were
structure members. E.g.

PersonalDetails.BirthDay = 27;

assigns a value to the Birthday member.

 if(PersonalDetails.Active && !PersonalDetails.Female)

 :
 :

 would select active, male members of the club.

The same effect could be achieved by using bitwise and
shift operations to unpack the fields.

Using a bit field causes the compiler to generate the
required shifts and saves programmer's effort.

We first write a program to generate the input file
members.dat

 56

Data to be Entered

Date of Birth Gender Active PaidUp

 13/11/70 1 1 0
 20/08/60 0 0 1
 01/01/65 0 0 0
 31/05/55 0 1 0
 10/10/44 0 1 1
 25/12/48 0 1 1
 22/07/53 1 0 0
 02/09/69 0 1 0
 13/01/58 0 1 0
 05/05/61 1 1 1

Some Essential C Functions and Data Type

size_t is an unsigned integer.

size_t fread(void *Data, size_t ObjSize,
 size_t NumObjs, FILE *indata)

 Reads from indata to the array pointed to by Data
up to NumObjs objects each of size ObjSize. It
returns the number of objects (not bytes) actually
read, which may be fewer than NumObjs if the end
of file is met.

size_t fwrite(const void *Data, size_t ObjSize,
 size_t NumObjs, FILE *outdata)

 Writes to outdata from the array pointed to by Data
up to NumObjs objects each of size ObjSize. It
returns the number of objects (not bytes) actually
written, which may be fewer than NumObjs if a write
error occurs.

 57

Program

/* AC2-5A.C - This program creates a binary data file
 named "members.dat" for "AC2-5B.C". */

#include<stdio.h>

main()
{
 struct
 {
 unsigned int BirthDay :5;
 unsigned int BirthMonth :4;
 unsigned int BirthYear :7;
 unsigned int Female :1;
 unsigned int Active :1;
 unsigned int PaidUp :1;
 } PersonalDetails;

 FILE *outdata;
 char more;
 int data;

 outdata=fopen("members.dat","wb");
 /* Binary File, not readable */

 58

 do {
 printf("Response to the following querying please !!\n");
 printf("BirthDay : ");
 scanf("%d",&data);
 PersonalDetails.BirthDay=data;

 printf("BirthMonth : ");
 scanf("%d",&data);
 PersonalDetails.BirthMonth=data;

 printf("BirthYear : ");
 scanf("%d",&data);
 data = data %100;
 PersonalDetails.BirthYear=data;

 printf("Sex (male=0, female=1) : ");
 scanf("%d",&data);
 PersonalDetails.Female=data;

 printf("Active (no=0, yes=1) : ");
 scanf("%d",&data);
 PersonalDetails.Active=data;
 printf("Paidup : ");

 scanf("%d%*c",&data);
 PersonalDetails.PaidUp=data;
 fwrite(&PersonalDetails,
 sizeof(PersonalDetails), 1, outdata);
 printf("Any more members?(y/n)");
 scanf("%c",&more);
 }while (more!='n');

 fclose(outdata);

 return 0;
}

 59

The following program reads the binary file members.dat
where each record is stored as the struct format and print
out the birthday of those active male members who have
not paid up the club fees. The program also displays the
numbers of female and male club members.

Program

/* AC2-5B.C */

#include<stdio.h>
#define TRUE 1

main()
{
 struct
 {
 unsigned int BirthDay :5;
 unsigned int BirthMonth :4;
 unsigned int BirthYear :7;
 unsigned int Female :1;
 unsigned int Active :1;
 unsigned int PaidUp :1;
 } PersonalDetails;

 FILE *indata;
 int total=0,female=0;

 indata=fopen("a:\\ac2\\members.dat","rb");

 printf ("\nRecords of active male members
 who have not paid:\n");

 60

 do
 {
 fread(&PersonalDetails, sizeof(PersonalDetails), 1, indata);
 if (feof(indata)) break;
 if(PersonalDetails.Active && !PersonalDetails.Female
 && !PersonalDetails.PaidUp)
 {
 printf("\nBirth date : %d/%d/%d\n",
 PersonalDetails.BirthDay, PersonalDetails.BirthMonth,
 PersonalDetails.BirthYear);
 printf("Sex : Male.\n");
 printf("Status : Active.\n");
 printf("Paidup : NO.\n");
 }
 total++;
 if (PersonalDetails.Female) female++;
 } while (TRUE);

 printf("\nThere are %d female members and %d male
 members in the club.\n", female, total-female);

 fclose(indata);

 return 0;
}

Screen Output

Records of active male members who have not paid:

Birth date : 31/5/55
Sex : Male.
Status : Active.
Paidup : NO.

 61

Birth date : 2/9/69
Sex : Male.
Status : Active.
Paidup : NO.

Birth date : 13/1/58
Sex : Male.
Status : Active.
Paidup : NO.

There are 3 female members and 7 male members in the
club.

Order of Bit Fields Storage

 Not defined by the ANSI standard.

 Implementation dependent.

 To reduce the chance of portability problems, avoid fields
of more than 16 bits and never make assumptions about
the order of storage.

 Fields can be only of type int (signed or unsigned), but as
they are only part of a word they do not have addresses,
and so cannot be used with the address (&) operator.

The following two programs illustrate bit alignment
(boundary) and the storage requirements.

 62

Program

/* AC2-6.C */

#include<stdio.h>

main()
{
 int size;
 struct
 {
 int Part1 : 3;
 int Part2 : 5;
 } demo;

 size=sizeof(demo);
 printf("size of struct is %d bytes.\n",size);
 demo.Part1 = 3;
 demo.Part2 = 18;

 printf("Part1=%d, Part2=%d\n",demo.Part1,demo.Part2);

 return 0;
}

Screen Output (with word alignment)

size of struct is 2 bytes.

Part1=3, Part2=-14

Unused

15 8 7

-14

3 2 0

3

demo.Part1demo.Part2

2 byte

Why –14 and not 18?

 63

Program

/* AC2-6.C */

#include<stdio.h>

main()
{
 int size;
 struct
 {
 int Part1 : 3;
 int Part2 : 5;
 } demo;

 size=sizeof(demo);
 printf("size of struct is %d bytes.\n",size);
 demo.Part1 = 3;
 demo.Part2 = 18;

 printf("Part1=%d, Part2=%d\n",demo.Part1,demo.Part2);

 return 0;
}

Screen Output (without word alignment)

size of struct is 1 bytes.
Part1=3, Part2=-14

-14

3 2 0

3

7

demo.Part2 demo.Part1

1 bytes

 64

Program

/* AC2-7.C */

#include<stdio.h>

main(void)
{
 struct bits
 {
 unsigned first : 2;
 unsigned second : 15;
 };
 struct bits this1;

 this1.first=3;
 this1.second=0x7fff;
 printf("first = %u, second = %u\n", this1.first, this1.second);
 printf("size of struct = %d bytes.",sizeof(this1));

 return 0;
}

Screen Output (with word alignment)

first = 3, second = 32767
size of struct = 4 bytes.

3130

32767

1615

unused

2 1 0

3unused

this1.second this1.first

4 byte

 65

Program

/* AC2-7.C */

#include<stdio.h>

main(void)
{
 struct bits
 {
 unsigned first : 2;
 unsigned second : 15;
 };
 struct bits this1;

 this1.first=3;
 this1.second=0x7fff;
 printf("first = %u, second = %u\n", this1.first, this1.second);
 printf("size of struct = %d bytes.",sizeof(this1));

 return 0;
}

Screen Output (without word alignment)

first = 3, second = 32767
size of struct = 3 bytes.

23 1716 2 1 0

3

this1.second this1.first

3 byteunused

15

32767

 66

Chapter 4

Advanced File Operations

1. Introduction

 FILE is defined in <stdio.h> and used for input and
output.

 Text file is readable, but not binary file.

 Three files are opened when a C program is executing.

 stdin : default input file
 stdout : default output file
 stderr : a file to which error messages are written.

 On microcomputers stdin often represents the keyboard,
and stdout and stderr the screen, but this is by no
means universal.

 67

2. Opening and Closing Files

 Reference to files is via variables which are always
pointers to a structure of type FILE.

 A typical declaration might be

FILE *indata;

This file can then be opened by

 indata = fopen ("monkey.inf","r");

 Open the file monkey.inf for reading.

 Generate a structure to hold whatever control information
is needed, and leave indata pointing to it.

 File descriptor may be complicated.

 E.g., "a:\\monkey.inf" where a drive name is appended.
The second parameter is also a string, "r" in this case
meaning 'read'.

How about c:\\cz1102\\prac3\\monkey.inf ?

 68

 The options are:

 "r" Open an existing file for reading.

 "w" Open a file for writing. If the file does not exist
then it will be created and if it does exist then
its contents will be deleted before writing.

 "a" Open an existing file for writing so that new
data will be appended to the end of the current
file contents.

 "r+" Open a file for reading but allow writing. That
is, the file can be both read from and written to.
However, errors will be handled as if the file
were opened for reading.

 "w+" The same as "r+" except that errors will be
appropriate to writing.

 "a+" Open a file for appending but allow reading at
the same time.

 If a file is to be opened for binary input or output then a 'b'
('b' means binary) should be added to the above strings
e.g. "wb", "r+b" or "rb+".

 69

 fopen will return a pointer value of NULL if the file cannot
be opened and so this can be used to test for successful
completion of the operation.

 The file opened above can be closed with:

fclose (indata);

 File closing should not be omitted because it is
dangerous to do so, particularly for files which are
opened for writing.

 Closing a file releases the space used by the FILE
structure and ensures that, when a file is being written,
the file buffer is emptied.

 When a program requests that a character be written to a
disk the request is not carried out immediately. Instead
the character is placed in an array, called a buffer, which
accumulates characters until there are enough to be
worth writing. 'Enough', in this sense, usually means the
size of a disc sector.

 If the buffer is not emptied then the file may not include
the latest data written.

 fclose ensures that the buffer will be written, i.e., the
contents of the buffer are transferred to a storage device.

 70

The following example shows a program to create a
sequential file.

Program

/* AC4-1.C */
/* NOTE : A file named "clients.dat" will be generated in the current
directory */

#include <stdio.h>

main()
{
 int account;
 char name[30];
 float balance;
 FILE *outdata; /*outdata=clients.dat file pointer */

 if ((outdata=fopen("clients.dat","w")) == NULL)
 printf ("File could not be opened\n");
 else
 {
 printf("Enter the account, name, and balance.\n");
 printf("Enter <EOF> character (CTRL+Z in DOS) to end input.\n");
 printf("? ");
 scanf("%d%s%f",&account,name,&balance);

 while (!feof(stdin))
 {
 fprintf(outdata," %d %s %.2f\n", account,name,balance);
 printf("? ");
 scanf("%d%s%f",&account,name,&balance);
 }

 fclose(outdata); /* close the data file */
 }

 return 0;
}

 71

Screen Output

Enter the account, name, and balance.
Enter <EOF> character (CTRL+Z in DOS) to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Output File (clients.dat)

 100 Jones 24.98
 200 Doe 345.67
 300 White 0.00
 400 Stone -42.16
 500 Rich 224.62

 72

The following example illustrates the reading and printing of
a sequential file.

Program

/* AC4-2.C */
/* NOTE : A file named "clients.dat" must be put in current directory */

#include<stdio.h>

main()
{
 int account;
 char name[30];
 float balance;
 FILE *indata; /* indata = clients.dat file pointer */

 if ((indata=fopen("clients.dat","r")) == NULL)
 printf ("File could not be opened\n");
 else
 {
 printf ("%-10s%-13s%s\n","Account", "Name","Balance");
 /* - means left justified */

 printf ("==============================\n");
 fscanf(indata,"%d%s%f",&account, name, &balance);
 while (!feof(indata))
 {
 printf("%-10d%-13s%7.2f\n",account, name, balance);
 fscanf(indata,"%d%s%f",&account, name, &balance);
 }

 fclose(indata); /* close the data file */
 }

 return 0;
}

 73

Screen Output

Account Name Balance
==============================
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

 74

Reopening a File

freopen ("monkey2.inf", "r", indata);

 Closes the existing file associated with indata and opens
the file monkey2.inf.

 Acts in the same way as fopen in that it also delivers a
pointer to indata and delivers NULL if the file cannot be
opened.

The following example illustrates the use of freopen.

We want to encode two files. Put the output in the same
text file.

Input File-1 (monkey1.inf)

Two sections of commando will attack
Delta-2A at 0200 hour.
Big Bird will give support fire.

Input File-2 (monkey2.inf)

If alpha company is confronted,
call for hawk.

Output File (donkey.ouf)

First encoded message :
Ydl hvxgrlmh lu xlnnzmwl droo zggzxp
Ivogz-2K zg 0200 slfi.
Krt Kriw droo trev hfkklig uriv.

Second endcoded message:
Su zoksz xlnkzmb rh xlmuilmgvw,
xzoo uli szdp.

 75

Program

/* AC4-3.C */

#include<stdio.h>

main()
{
 FILE *indata,*outdata;
 char this1;
 int i;

 indata=fopen("a:\\ac4\\monkey1.inf","r");
 outdata=fopen("a:\\ac4\\donkey.ouf","w");
 fprintf(outdata,"First encoded message :\n");

 for (i=0;i<2;i++)
 {
 while (fscanf(indata,"%c",&this1)==1)
 {
 if (this1>='A' && this1<='Z')
 fprintf(outdata,"%c", ((this1-2*'A'+'K')%26)+'A');
 else
 if (this1>='a' && this1<='z') fprintf(outdata,"%c",'z'-(this1-'a'));
 else
 fprintf(outdata,"%c",this1);
 }

 if (i==0)
 {
 fprintf(outdata,"\nSecond endcoded message:\n");
 if (freopen("a:\\ac4\\monkey2.inf","r",indata) == NULL) i=1;
 }
 }

 fclose(indata);
 fclose(outdata);

 return 0;
}

 76

Empty a output buffer even before the buffer is full

 fflush forces the emptying of output buffers.

 Flushing output buffer is essential if a file is open in one
of the 'update' modes ("w+", "r+" or "a+") and a change is
made from writing to reading.

 Unless fflush is called before finishing a sequence of
write operations, the information remaining in the output
buffer will not be written at the correct point in the file.

 77

This program illustrates the use of fflush function.

Program

/* AC4-4.C */

#include<stdio.h>

main()
{
 int i;
 float result,mark,sum=0;
 FILE *outdata;

 outdata=fopen("test.dat","w+");
 for (i=0;i<5;i++)
 {
 printf("Enter test result>");
 scanf("%f%*c",&result);
 fprintf(outdata,"%f\n",result);
 }
 fflush(outdata); /* transfer data from buffer to disk */

 rewind(outdata);
 for (i=0;i<5;i++)
 {
 fscanf(outdata,"%f",&mark);
 sum += mark;
 }

 fclose(outdata);
 printf("Average = %f\n",sum/5);

 return 0;
}

 78

Screen Output

Enter test result>100.000000
Enter test result>45.000000
Enter test result>83.000000
Enter test result>97.000000
Enter test result>60.000000

Average = 77.000000

 79

3. File Positioning

 void rewind (FILE *Stream)
 Positions Stream so that the next read or write operation

will be at the beginning of the file. If this is not possible
then there will be no effect.

 long int ftell (FILE *Stream)
 Returns the current positions within Stream, or -1L if an

error occurs.

 int fseek (FILE *Stream, long int Offset, int Origin)
 Sets the file position within Stream so that subsequent

reading or writing will occur from there. the position is in
the form of an Offset relative to an Origin. The possible
values of Origin are SEEK_SET, SEEK_CUR and
SEEK_END. If an error occurs then a non-zero value is
returned; a return value of zero indicates success.

 Origin Measure offset from
 SEEK_SET Beginning of file
 SEEK_CUR Current position
 SEEK_END End of file

 80

Program

/* AC4-5.C */

#include<stdio.h>
#include<stdlib.h>

#define MAX 20

main()
{
 FILE *indata;
 char words[MAX];

 if ((indata=fopen("words.ouf","a+")) == NULL)
 {
 fprintf(stderr,"Can't open \"words\" file.\n");
 exit(1);
 }

 puts("Enter words to add to the file; type the <Enter> key \n");
 puts("at the beginning of a line to terminate.");

 while (gets(words)!=NULL && words[0]!='\0')
 fprintf(indata,"%s\n",words);

 puts("File contents:");
 rewind(indata); /* go back to the beginning of the file */

 while (fscanf(indata,"%s",words)==1)
 puts(words);

 fclose(indata);

 return 0;
}

 81

Screen Output

C>ac4-5
Enter words to add to the file; type the <Enter> key
at the beginning of a line to terminate.
See the canoes

File contents:
See
the
canoes

C>ac4-5
Enter words to add to the file; type the <Enter> key
at the beginning of a line to terminate.
on the
sea

File contents:
See
the
canoes
on
the
sea

Output File (words.ouf)

See the canoes
on the
sea

 82

4. Random Access Files

 Records in a file created with the formatted output
function fprintf are not necessarily of the same length.

 Individual records of a randomly accessed file are
normally fixed in length and may be accessed directly
(and thus quickly) without searching through other
records.

 Randomly accessed files are appropriate for airline
reservation systems, banking systems, point-of-sale
systems, and other kinds of transaction processing
systems that require rapid access to specific data.

 Because every record in a randomly accessed file
normally has the same length, the exact location of a
record relative to the beginning of the file can be
calculated as a function of the record key. We will soon
see how this facilitates immediate access to specific
records, even in large files.

 83

0 200 400300 500100

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

 Data can be inserted in a randomly accessed file without
destroying other data in the file.

 Data stored previously can also be updated or deleted
without rewriting the entire file.

 84

Essential Instructions

 size_t is an unsigned integer in Turbo C.

 size_t fread(void *Data, size_t ObjSize, size_t NumObjs,

FILE *indata)
 Reads from indata to the array pointed to by Data up to

NumObjs objects each of size ObjSize. It returns the number
of objects (not bytes) actually read, which may be fewer than
NumObjs if the end of file is met.

 size_t fwrite(const void *Data, size_t ObjSize, size_t

NumObjs, FILE *outdata)
 Writes to outdata from the array pointed to by Data up to

NumObjs objects each of size ObjSize. It returns the number
of objects (not bytes) actually written, which may be fewer than
NumObjs if a write error occurs.

File processing programs rarely write a single field to a file.
Normally, they write one struct at a time.

Example:

We are going to create a credit processing system capable
of storing up to 100 fixed-length records. Each record
should consist of an account number that will be used as
the record key, a last name, a first name, and a balance.
The resulting program should be able to update an account,
insert a new account record, delete an account, and list all
the account records in a formatted text file for printing.
Randomly accessed file is used.

 85

Creating a Random Access File.

Program

/* AC4-6.C */
/* NOTE : A data file named "credit.dat" will be created for program
 "AC4-7.C" and "AC4-8.C"
*/

#include <stdio.h>

struct clientData
{
 int acctNum;
 char lastName[15];
 char firstName[10];
 float balance;
};

main()
{
 int i;
 struct clientData blankClient = { 0, "", "", 0.0 };
 FILE *outdata;

 if ((outdata=fopen("credit.dat","w")) == NULL)
 printf("File could not be opened.\n");
 else
 {
 for (i=1;i<=100;i++) /* write 100 blank records to the file */
 fwrite(&blankClient, sizeof(struct clientData), 1, outdata);

 fclose(outdata);
 }

 return 0;
}

Output File (credit.dat, binary format and not readable)

 86

 The program initializes all 100 records of the file
"credit.dat" with empty structs using function fwrite.

 Each empty struct contains 0 for the account number,
NULL (represented by empty quotation marks) for the
last name, NULL for the first name, and 0.0 for the
balance.

 The file is initialized in this manner to create space on the
disk in which the file will be stored, and to make it
possible to determine if a record contains data.

fwrite

fwrite (&blankClient, sizeof(struct clientData), 1, outdata);

Writing Data Randomly to a Random Access File

 The next program writes data to the file "credit.dat".

 It uses the combination of fseek and fwrite to store data
at specific locations in the file. Function fseek sets the file
position pointer to a specific position in the file, then
fwrite writes the data.

 87

Program

/* AC4-7.C */

/* Writing to a random access file */
#include<stdio.h>

struct clientData
{
 int acctNum;
 char lastName[15];
 char firstName[10];
 float balance;
};

main()
{
 struct clientData client;
 FILE *outdata;

 if ((outdata=fopen("credit.dat","r+")) == NULL)
 printf("File could not be opened.\n");
 else
 {
 printf("Enter account number (1 to 100, 0 to end input)\n? ");
 scanf("%d",&client.acctNum);

 while (client.acctNum != 0)
 {
 printf("Enter lastname,firstname,balance\n?");
 scanf("%s%s%f",client.lastName,client.firstName, &client.balance);
 fseek(outdata,(client.acctNum - 1)* sizeof(struct clientData),

 SEEK_SET);
 fwrite(&client, sizeof(struct clientData), 1, outdata);
 printf("Enter account number\n? ");
 scanf("%d",&client.acctNum);
 }
 }
 fclose(outdata);
 return 0;
}

 88

fseek

 fseek(outdata, (client.accNum - 1) * sizeof(struct clientData), SEEK_SET);

Screen Output

Enter account number (1 to 100, 0 to end input)
? 30
Enter lastname, firstname, balance
Kassim Abula 75.3
Enter account number
? 27
Enter lastname, firstname, balance
Lily Tay 42.5
Enter account number
? 56
Enter lastname, firstname, balance
Angeelo Ali 70.89
Enter account number
? 34
Enter lastname, firstname, balance
Keng Heng 0.00
Enter account number
? 10
Enter lastname, firstname, balance
Milly Ken 203.41
Enter account number
? 0

 89

Other Use of fseek

int fseek(FILE *stream, long int offset, int whence);

offset : is the number of bytes from location whence

whence : SEEK_SET
(origin) SEEK_CUR
 SEEK_END

These three symbolic constants are defined in the stdio.h header
file.

Memory

 5Byte
number

(File position
 pointer)

outdata

0 1 2 3 4 5 6 7 8 9 ...

The file position pointer indicating an offset of 5 bytes from the
beginning of the file.

 90

Reading Data Randomly from a Random Access File

 Use of fseek and fread, or fseek and fwrite to read/write
records from/to a file randomly.

 Position the file pointer to the desired record we want to
read or write, then we perform the operation on the
record.

Program

/* AC4-8.C */

#include<stdio.h>

struct clientData
{
 int acctNum;
 char lastName[15];
 char firstName[10];
 float balance;
};

main()
{
 struct clientData client;
 FILE *indata;
 int option,accountNum;

 91

 if ((indata=fopen("credit.dat","r+")) == NULL)
 printf("File could not be opened.\n");
 else
 {
 printf("1. Read a record\n");
 printf("2. Change a record\n");
 printf("Enter your choice >");
 scanf("%d%*c",&option);

 printf("Enter account number >");
 scanf("%d%*c",&accountNum);
 fseek(indata, (accountNum-1)*sizeof(struct clientData), SEEK_SET);

 if (option==1)
 {
 fread(&client, sizeof(struct clientData), 1, indata);
 if (client.acctNum==0)
 printf("Account %d has no information.\n", accountNum);
 else
 printf("%-6d %-10s %-11s %10.2f\n",
 client.acctNum, client.lastName, client.firstName, client.balance);
 }
 else
 {
 printf("Enter lastname, first name, balance\n");
 scanf("%s%s%f",client.lastName, client.firstName, &client.balance);

 client.acctNum=accountNum;
 fwrite(&client, sizeof(struct clientData), 1, indata);
 }
 }

 fclose(indata);
 return 0;
}

 92

Screen Output

1. Read a record
2. Change a record
Enter your choice >1
Enter account number >27
27 Lily Tay 42.50

1. Read a record
2. Change a record
Enter your choice >2
Enter account number >34
Enter lastname, first name, balance
Keng Heng 100.00

1. Read a record
2. Change a record
Enter your choice >1
Enter account number >80
Account 80 has no information.

 93

Chapter 5

Dynamic Memory Allocation

1 Introduction

 Some memory storage requirement cannot be
determined at compilation time, such as the keyboard
input and I/O requests.

 The storage is allocated dynamically at runtime. A
program area called the heap is used to allocate memory
dynamically.

 The heap is kept separate from the stack. It's possible,
however, for the heap and stack to share the same
memory segment.

Operating
System

.

.

Stack

Heap

User's
Program

Working
Space for

user's Program

RAM

A Simplified Semantic View of Memory

 94

 A program that uses a large amount of memory for the
stack may have a small amount of memory available for
the heap and vice versa.

 You need to ensure that the storage is successfully
allocated to store the data and to have some exception
handling logic for the unsuccessful storage allocation.

 The heap is controlled by a heap manager, which
allocates and deallocates (or returns) memory. User
programs interface to the heap via C library calls.

 95

2 C Functions for Dynamic Memory Allocation

Bytes of memory are allocated in user-defined "chunks"
(sometimes called objects) with

 malloc()

 calloc()

 realloc()

 free() relinquishes memory

 __
 Routine Meaning
 __

char *malloc(size) allocate storage
unsigned size; for size bytes

char *calloc(n, size) allocate and zero storage
unsigned n, size; for n items of size bytes

char *realloc(pheap,
 newsize) reallocate storage
char *pheap; for old heap pointer pheap
unsigned newsize; for newsize bytes

void free(pheap) free storage
char *pheap; for heap pointer pheap

__

 96

 sizeof() determines the number of bytes in the structure
and makes the code portable.

 malloc() returns a heap address, and the program casts
its return value from a pointer to a char (a byte pointer) to
a pointer to a structure (structure block). You should
always check the return value from malloc() and the other
library calls before you use the heap address. A NULL
(defined in stdio.h) indicates that the heap manager was
unable to allocate storage.

 97

Program

/* AC3-1.C - allocate block on heap */

#include<stdio.h>
#include<stdlib.h>

struct block
{
 int header;
 char data[1024];
};

main()
{
 struct block *p;

 p=(struct block*) malloc (sizeof(struct block));

 if (p == NULL)
 {
 printf("malloc can't allocate heap space.\n");
 exit (1);
 }
 else
 {
 printf("Memory allocation successful!\n");
 free(p); /* deallocate the memory */
 }

 return 0;
}

Screen Output

Memory allocation successful!

 98

calloc()

 calloc() is similar to malloc(), but the routine fills heap
memory with zeros. calloc(), therefore, runs slightly
slower than malloc().

 calloc() takes two arguments, which are the number of
objects to be allocated, and the size of each object.

 E.g.,
 p2=(struct block*) calloc(MAXENTRIES,
 sizeof(struct block));

 calloc() also returns a heap address.

 99

Program

/* AC3-2.C - allocate MAXENTRIES blocks on heap */

#include<stdio.h>
#include<stdlib.h>
#define MAXENTRIES 5

struct block
{
 int header;
 char data[1024];
};

main()
{
 struct block *p1,*p2;

 p1=(struct block*) malloc(MAXENTRIES * sizeof(struct block));

 if (p1 == NULL)
 {
 printf("malloc can't allocate heap space.\n");
 exit (1);
 }
 else
 {
 printf("Memory allocation for 'p1' is successful!\n");
 free(p1); /* return memory to the system */
 }

 100

 p2=(struct block*) calloc(MAXENTRIES, sizeof(struct block));

 if (p2 == NULL)
 {
 printf("calloc can't allocate heap space.\n");
 exit (1);
 }
 else
 {
 printf("Memory allocation for 'p2' is successful!\n");
 free(p2); /* return memory to the system */
 }

 return 0;
}

Screen Output

Memory allocation for 'p1' is successful!
Memory allocation for 'p2' is successful!

 After the call to malloc(), p1 points to the first of five
consecutive structures (of type block) in memory.

 Similarly, p2 points to the first of five structures after the
call to calloc(). The storage that p2 points to is zero-filled.
Note that we pass two arguments to calloc(), but only one
to malloc().

 Each call allocates the same amount of heap memory.

 101

realloc()

 realloc() allows you to change the size of any object on
the heap.

 The routine's first argument is a pointer to a heap
address. Presumably, this pointer is initialized from a
previous call to the heap manager. The second argument
is the number of bytes (including the existing) to be
reallocated.

 E.g.,

 if ((num=(int*) realloc(num,size*(j+1)))==NULL)
 {
 printf("realloc fails.\n");
 exit(1);
 }

 realloc() can increase or decrease an object's size in
heap memory.

 realloc() also preserves data in memory. If the storage
space is being increased and there's not enough
contiguous space on the heap, realloc() returns a
different address than the one that you pass as its first
argument. This means realloc() may have to move data;
hence, its execution time varies.

 Occasionally, realloc() returns the same heap address.
So, you have to maintain a table of heap addresses.
When you allocate memory from the heap manager using
any of the library calls, you should always update your
table with the new pointer, even though it may not have
changed. Programs that don't do this are not reliable.

 102

 The heap manager frees heap memory with the C library
call free(). You call it with a heap address returned from a
previous call to malloc(), calloc(), or realloc(). The
following statements free a structure called block from the
heap:

struct block *p;

p = (struct block *) malloc (sizeof(struct block));

if (p == (struct block *) NULL)
{
 printf("malloc can't allocate heap space\n");
 exit(1);
}

/* processing on the block */
 .
 .
free(p); /* free the structure */
 .
 .

You must pass a pointer to the start of some previously
allocated space to free(). Note that free() doesn't return any
thing.

 103

4 Building an Array on the Fly

Suppose you are told to write a C program to perform a set of
statistical analysis on the fly, how do you use array in a program
without knowing the sample size ?

The following program demonstrates the way to build an array of
arbitrary size.

Program

/* AC3-3.c */

#include<stdio.h>
#include<stdlib.h>

main()
{
 int count,size,i,j;
 int *num,sum=0;
 float average;

 printf("Enter as many integer values as you want! \n");
 printf("I will build an array on the fly with them
 and compute the average\n");
 printf("and the number of occurrences of the
 numbers which are less than\n");
 printf("the average.\n");
 printf("Note : Any non-number means you are done.\n");

 size = sizeof(int);
 if ((num=(int*) malloc (size))==NULL)
 {
 printf("malloc fails.\n");
 exit(1);
 }

 j=0;

 104

 while (scanf("%d%*c",&num[j])==1)
 {
 sum+=num[j];
 j++;

 /* enlarge the array */
 if ((num=(int*) realloc(num,size*(j+1)))==NULL)
 {
 printf("realloc fails.\n");
 exit(1);
 }
 }

 average=(float)sum/j;
 count=0;
 for (i=0;i<j;i++) if (num[i]<average) count++;

 printf("Average = %f\n",average);
 printf("No. of occurrences below average = %d\n", count);
 return 0;
}

Screen Output

Enter as many integer values as you want!
I will build an array on the fly with them and compute the average
and the number of occurrences of the numbers which are less than
the average.
Note : Any non-number means you are done.
2800
3500
2000
1800
2200
3800
1800
4000
x

Average = 2737.500000
No. of occurrences below average = 4

 105

 The previous program is flexible as the size of the array
can vary at runtime.

 However, the program is not efficient as the realloc
function is invoked in each iteration.

The next program shows an example of dynamic memory
allocation, but of a larger grain size. The program allocates
a contiguous 10 bytes on the heap whenever the realloc
function is called. Finally, the program trims away the
storage which was allocated earlier but not occupied.

Program

/* AC3-4.C */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main()
{
 char *first,*current;
 char this1;
 int buffersize=10,increment=10,count=0;

 printf("\n Enter a string of any length and ");
 printf("\n press 'enter' key when you are done :");

 if ((first=current=malloc(buffersize))==NULL)
 {
 printf("malloc fails.\n");
 exit(1);
 }

 106

 scanf("%c",&this1);
 while (this1 != '\n')
 {
 count++;
 *current=this1;

 if (count%increment==0)
 {
 buffersize+=increment;
 if ((first = current = realloc(first,buffersize))==NULL)
 {
 printf("realloc fails.\n");
 exit(1);
 }
 current += count;
 }
 else
 current++;

 scanf("%c",&this1);
 }

 *current='\0';
 count++;
 first=realloc(first,count);
 printf(" input string = %s\nlength = %d\n", first,strlen(first));

 return 0;
}

 107

Screen Output

Enter a string of any length and
press 'enter' key when you are done :C is so powerful that a lot of
scientists and engineers have switched from other languages to it.

input string = C is so powerful that a lot of
scientists and engineers have switched from other languages to it.
length = 96

5 Arrays of Pointers

 C lets you create arrays of any type of elements.

 You can even create an array whose elements are
pointers.

For example, to create an array of 10 pointers, in which
each item is a pointer to a float, simply declare the
following :

float *array_name[10];

- The * preceding the array name in this declaration

tells the compiler that the array is an array of
pointers; therefore, each element holds an address
(pronounced as where).

- The float signifies that all pointers will point to float

variables.

 108

You can use this technique for speeding up some sorting
programs. Suppose we are going to sort student records in
the ascending order of matrix number where each record is
defined as follows :

struct student
{
 char matrix[10];
 char dob[10];
 char sex;
 char subject[28][6];
};

Remember that for sorting data, we have to interchange
their contents if they are not in order:

int temp, i, j;

if (i > j)
{
 temp = i;
 i = j;
 j = temp;
}

It incurs 3 assignment instructions for each interchange.
Now in sorting our student records, each interchange
involves
 3 * (1+1+1+28) = 93 assignment instructions.

This is too expensive in terms of CPU time !!!

 109

In the next program, we will use selection sort to sort an
array of pointers, pointing to student records. Take note that
if the matriculation numbers of two records are not in order,
we will only interchange the pointers pointing to the records.
The contents of the records remain unchanged.

Input File (students.inf)

942343D02 01/06/75 M CP111 CM101 GM101 . . .
946785U03 03/02/74 F CP112 PC101 MA101 . . .
945786V04 16/12/73 M PC111 CZ101 MA101
947894P01 23/11/76 F CP111 BA123 GM101
945676Z02 23/09/75 M CP112 DB101 GM101
947983X02 11/03/73 M CP111 CM101 GM101
948797U03 23/12/74 F CP112 PC101 MA101
943664V04 13/08/73 M BA111 CZ101 MA101
944865P01 20/01/74 M CP111 BA123 GM102
944564Z02 30/09/75 M CP101 PC101 GM101

Selection Sort

Unsorted Array 1st iteration 2nd iteration 3rd iteration

 5
 4
 1
 3

 110

Selection Sort Using Pointers:

 n[0] 5

 n[1] 4

 n[2] 1

 n[3] 3

 111

 n[0] 5

 n[1] 4

 n[2] 1

 n[3] 3

 n[0] 5

 n[1] 4

 n[2] 1

 n[3] 3

 n[0] 5

 n[1] 4

 n[2] 1

 n[3] 3

 n[0] 5

 n[1] 4

 n[2] 1

 n[3] 3

 112

strcmp

Function Compares one string to another

Syntax # include <string.h>
 int strcmp (const char *s1, const char *s2);

Remarks strcmp performs an unsigned comparison of s1 and

s2, starting with the first character in each string
and continuing with subsequent characters until the
corresponding characters differ or until the end of
the string is reached.

Returns value
 strcmp returns a value that is
 < 0 if s1 is less than s2
 == 0 if s1 is the same as s2
 >0 if s1 is greater than s2

 113

Program

/* AC3-5.C */

#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 40

struct student
{
 char matrix[10];
 char dob[10];
 char sex;
 char subject[3][6]; /* To make life easy, I have declared a smaller
 two dimensional array of characters which is slightly different
 from the one mentioned earlier. But the actual sorting
 strategy used in this program can be applied to any amount
 of subjects. */
 } *st[MAXSIZE];

int GetRecord(void);
void SortRecord(int);

main()
{
 int no_of_st,i;

 no_of_st=GetRecord();
 SortRecord(no_of_st);
 for (i=0;i<no_of_st;i++)
 {
 printf("Matrix No. : %s.\t\tDate of Birth : %s. \tSex : %c.\n",
 st[i]->matrix,st[i]->dob,st[i]->sex);
 printf("Subjects : %10s%10s%10s.\n\n", st[i]->subject[0],
 st[i]->subject[1], st[i]->subject[2]);
 }

 return 0;
}

 114

GetRecord()
{
 int count=0,i;
 FILE *indata;

 indata=fopen("students.inf","r");
 do
 {
 st[count]=(struct student*)malloc(sizeof (struct student));
 fscanf(indata,"%s%s%*c%c%s%s%s", st[count]->matrix,
 st[count]->dob, &st[count]->sex,st[count]->subject[0],
 st[count]->subject[1], st[count]->subject[2]);

 count++;
 } while (!feof(indata));

 fclose(indata);

 return count;
}

void SortRecord(int n) /* Selection sort s used */
{
 int i,j,min;
 struct student *temp;

 for (i=0;i<n;i++)
 {
 min=i;
 for (j=i+1;j<n;j++) /* find the student with
 the smallest matrix No. */
 if (strcmp(st[j]->matrix,st[min]->matrix)<0) min=j;

 if (min!=i)
 {
 temp=st[min]; /* only 3 interchanges */
 st[min]=st[i];
 st[i]=temp;
 }
 }
}

 115

st[0] matric[10] dob sex sub[0] sub[1] sub[2]
st[1] matric[10] dob sex sub[0] sub[1] sub[2]
st[2] matric[10] dob sex sub[0] sub[1] sub[2]
st[3] matric[10] dob sex sub[0] sub[1] sub[2]

:
:

st[39]

:

st[i]
: 945786V04
:
:
: 943664V04

st[n-1]

 116

Screen Output

Matrix No. : 942343D02. Date of Birth : 01/06/75. Sex : M.
Subjects : CP111 CM101 GM101.

Matrix No. : 943664V04. Date of Birth : 13/08/73. Sex : M.
Subjects : BA111 CZ101 MA101.

Matrix No. : 944564Z02. Date of Birth : 30/09/75. Sex : M.
Subjects : CP101 PC101 GM101.

Matrix No. : 944865P01. Date of Birth : 20/01/74. Sex : M.
Subjects : CP111 BA123 GM102.

Matrix No. : 945676Z02. Date of Birth : 23/09/75. Sex : M.
Subjects : CP112 DB101 GM101.

Matrix No. : 945786V04. Date of Birth : 16/12/73. Sex : M.
Subjects : PC111 CZ101 MA101.

Matrix No. : 946785U03. Date of Birth : 03/02/74. Sex : F.
Subjects : CP112 PC101 MA101.

Matrix No. : 947894P01. Date of Birth : 23/11/76. Sex : F.
Subjects : CP111 BA123 GM101.

Matrix No. : 947983X02. Date of Birth : 11/03/73. Sex : M.
Subjects : CP111 CM101 GM101.

Matrix No. : 948797U03. Date of Birth : 23/12/74. Sex : F.
Subjects : CP112 PC101 MA101.

