1. Mean velocity (10 marks)
Three-dimensional motion: position vector operator \(\vec{R} \), momentum vector operator \(\vec{P} \). The system is in an eigenstate of the Hamilton operator \(H(\vec{P}, \vec{R}) \). Show that the mean velocity, that is: the expectation value of the velocity vector operator \(\vec{V} = \frac{d}{dt} \vec{R} \), is zero.

2. Time-dependent spreads (25=12+8+5 marks)
At time \(t = 0 \), the initial position wave function of a one-dimensional harmonic oscillator (position operator \(X \), momentum operator \(P \), mass \(M \), circular frequency \(\omega \)) is given by
\[
\psi(x) = \sqrt{\kappa} e^{-\kappa |x|}
\]
with \(\kappa > 0 \).
(a) Determine \(\delta X(t) \) and \(\delta P(t) \), the time-dependent spreads in position and momentum, respectively.
(b) Verify that Heisenberg’s position-momentum uncertainty relation is obeyed at all times.
(c) For which value of \(\kappa \) is the uncertainty product \(\delta X(t) \delta P(t) \) independent of time \(t \)?

3. Orbital angular momentum (20=5+10+5 marks)
The Hamilton operator of a spinning top is
\[
H = \frac{1}{2I_1} L_1^2 + \frac{1}{2I_2} L_2^2 + \frac{1}{2I_3} L_3^2,
\]
where \(L_1, L_2, L_3 \) are the cartesian components of the angular momentum vector operator \(\vec{L} \), and \(I_1, I_2, I_3 \) are the moments of inertia for the three major axes of rotation.
(a) State the equation of motion obeyed by \(L_1(t) \).
(b) If the top is in a common eigenstate of \(\vec{L}_2 \) and \(L_3 \) with eigenvalues \(2\hbar^2 \) and \(\hbar \), respectively, what is the expectation value \(\langle H \rangle \) of \(H \) and what is its spread \(\delta H \)?
(c) If \(I_2 = I_3 \), what are the eigenvalues of \(H \)?
4. Hydrogen-like atoms (20=8+8+4 marks)
You have a tritium atom (\(^3\)H, nuclear charge \(Z = 1\)) in its ground state [principal quantum number \(n = 1\), angular momentum quantum numbers \((l, m) = (0, 0)\)]. Suddenly the triton nucleus undergoes a \(\beta\) decay whereby the emitted electron (and also the neutrino) escape so rapidly that we can regard the net effect as an instantaneous replacement of the triton by a \(^3\)He nucleus (nuclear charge \(Z = 2\)). For the bound electron, this amounts to a sudden doubling of the nuclear charge.

(a) What is the probability that, after the decay, the resulting \(^3\)He\(^+\) ion is found in its electronic ground state as well?

(b) What is the probability that you find the \(^3\)He\(^+\) ion in its excited state with \(n = 2\) and \(l = 0\)?

(c) What is the probability that you find the \(^3\)He\(^+\) ion in one of its exited states with \(n = 2\) and \(l = 1\)?

Hint: For hydrogenic wave functions see equations (5.2.27), (6.7.6), and (6.7.16) in the lecture notes.

5. Perturbation Theory (25=15+10 marks)
A harmonic oscillator (ladder operators \(A, A^\dagger\); Hamilton operator \(H_0 = \hbar \omega A^\dagger A\)) is perturbed by \(H_1 = \hbar \Omega [A^\dagger (AA)^{-1/2} + (AA)^{-1/2} A]\). We denote the \(n\)th eigenvalue of the total Hamilton operator \(H = H_0 + H_1\) by \(E_n = \hbar \omega \epsilon_n(\Omega/\omega)\) where, of course, the unperturbed energies \(E^{(0)}_n = n \hbar \omega\) are recovered by \(\epsilon_n(0) = n\) for \(n = 0, 1, 2, \ldots\)

(a) For \(n = 0, 1, 2, \ldots\), determine \(\epsilon_n(\Omega/\omega)\) up to 2nd order in \(\Omega/\omega\) by Rayleigh–Schrödinger perturbation theory.

(b) Find the 2nd-order approximation to \(\epsilon_0(\Omega/\omega)\) in Brillouin–Wigner perturbation theory (only \(n = 0\) here).