Problem 1 (15=9+6 points)
Operator A has three different eigenvalues: $a_1 = 1$, $a_2 = 2$, $a_3 = 4$.

(a) Write the projection operators $|a_j⟩⟨a_j| = δ(A, a_j)$ ($j = 1, 2, 3$) as polynomials in A of the lowest possible degree.

(b) Write the operator function $f(A) = \log_2 A$ as a polynomial in A of the lowest possible degree.

Problem 2 (35=15+5+10+5 points)
Operators U and V are two cyclic unitary operators of period N for an N-dimensional quantum degree of freedom.

(a) We know from the lecture and the tutorials that, for all integer values of n and m,

$$\text{tr}\{U^m V^n\} = \begin{cases} N & \text{if } U^m = 1 \text{ and } V^n = 1, \\ 0 & \text{otherwise}, \end{cases} \quad (*)$$

if U and V are a pair of complementary observables. Now show the converse: If (*) holds, then U and V are a complementary pair. — Hint: Recall how to express a squared bracket in terms of a trace.

(b) Now consider the set of $N + 1$ operators defined by

$$W_0 = U, \ W_1 = U V, \ W_2 = U^2 V, \ldots, \ W_{N-1} = U^{N-1} V, \ W_N = V,$$

where U and V are the usual pair of complementary unitary operators. For $j = 1, 2, \ldots, N - 1$, show that $W_j = U^j V$ is unitary and W_j^N is a multiple of the identity.

(c) Then show that each pair W_j, W_k ($0 \leq j < k \leq N$) is a complementary pair if N is prime.

(d) For $N = 4$, find a pair W_j, W_k that is not a complementary pair.
Problem 3 (20=10+10 points)

Mass M moves along the x axis whereby the Hamilton operator

$$H = \frac{1}{2M}p^2 - \lambda \delta(X - x_0)$$

with constant λ and x_0 governs the evolution. The time transformation function $\langle x, t_1 | x', t_2 \rangle$ depends on the strength λ of the coupling to, and the location x_0 of, the delta-function potential $\delta(X(t) - x_0) = |x_0, t\rangle \langle x_0, t|.$

(a) Use the quantum action principle to express $\frac{\partial}{\partial \lambda} \langle x, t_1 | x', t_2 \rangle$ as an integral over the intermediate time t.

(b) Then recall the $\lambda = 0$ form of the time transformation function and determine the value of $\frac{\partial}{\partial \lambda} \langle x_0, t_1 | x_0, t_2 \rangle \big|_{\lambda = 0}$. — Hint: A parameterization that we used in lecture for an integral on page 40 of the notes could be useful.

Problem 4 (30=10+10+10 points)

For an operator A that has an inverse A^{-1}, one can define the determinant by the differential statement

$$\delta \det \{A\} = \det \{A\} \text{tr} \{A^{-1} \delta A\} \quad (***)$$

together with $\det \{1\} = 1$.

(a) Consistency requires that $\delta_1 \delta_2 \det \{A\} = \delta_2 \delta_1 \det \{A\}$ if δ_1 and δ_2 symbolize two independent infinitesimal variations. Verify that this is indeed correct. — Hint: You will need an expression for δA^{-1}.

(b) Use (***) to show that $\det \{AB\} = \det \{A\} \det \{B\}$.

(c) Use (***), to express $\det \{e^Z\}$ in terms of $\text{tr} \{Z\}$.