Tutorial 2

To be discussed during the tutorial on Friday 9 Feb. 2007. You should hand over your home Your contributions toward the discussion are strongly encouraged and will be evaluated.

1. Given the fact that for a multi-component system, \(dE \) can be written

\[
dE = TdS - PdV + \sum \mu_\alpha dN_\alpha
\]

a. what are the expressions of \(dH, dF, dG? \)

b. To show that the chemical potential under constant \(T, V, \) and constant \(T, P, \) can be given by

\[
\mu_\alpha = \left[\frac{\partial F}{\partial N_\alpha} \right]_{T,V,N_T}, \quad \mu_\alpha = \left[\frac{\partial G}{\partial N_\alpha} \right]_{T,P,N_T}
\]

respectively.

2. Calculate \(W \) and \(\Delta S \) for the isothermal reversible expansion of 3 moles of an ideal gas from 12 to 80 liters at 25°C.

3. Assuming that a polypeptide chain has only one \(\alpha \)-helical conformation and that there are three possible orientations for each amino acid residue in the random-coil state, calculate \(\Delta S \) for the conformational change

\(\alpha \)-helix \(\rightarrow \) random coil

for a polypeptide of 100 residues. What value of \(\Delta H \) per residue would be required to make the melting point (the temperature at which the equilibrium constant equals 1) be 50°C? Compare this with the hydrogen-bond energy, estimated to be 0 to 12 kJ/mol.

4. Two energy levels of a molecule are separated by \(1 \times 10^{-15} \) erg. The degeneracy of the higher level is twice that of the lower. Calculate

a. the relative populations of these levels at 0°C

b. the temperature at which they will be equally populated.

5. a. Consider a chemical reaction in which a molecule moves from gas to a water solution. At atmospheric pressure, each gas molecule occupies a volume of about 24 L/mole, whereas in solution, the volume is closer to the volume occupied by a water molecule, or \(1/(55 \text{ mole/L}) \). Estimate \((\Delta V)_p \), expressing your answer in units of \(k_B T_r \).

b. Consider a reaction in which two molecules in aqueous solution combine to form one. Compare an estimate of \((\Delta V)_p \) with what you found in (a) and comment on why we usually don’t need to distinguish between \(F \) and \(G \) for such reactions.

![molecular structures](image.png)